M208 I1: A Periodic Non-Trigonometric Function

A periodic function is not necessarily a trigonometric function. There are simpler examples of periodic non-trigonometric functions such as $f(x)=x-[x]$, where $[x]$ is the integer part of x, than the following example; but the example below is not only continuous but differentiable (i.e. smooth) and has a graph almost indistinguishable from the graph of $y=\sin (\pi x)$.
The example can be most clearly expressed as a composite of two real functions.
Define $h: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
x \mapsto x-2[(x+1) / 2]
$$

and $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
u \mapsto 4 u(1-|u|)
$$

Then let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $f=g \circ h$.
So $f(x)=4(x-2[(x+1) / 2])(1-|x-2[(x+1) / 2]|)$, but this is not helpful in understanding f. To understand the function f, first check that $h(x)=x$, for $-1 \leqslant x<1$, that $h(\mathbb{R})=[-1,1)$ and that h is periodic with period 2 . Second, you only need to sketch g for the range $-1 \leqslant u<1$ and check that you get the part of the graph in Figure 1 from -1 to 1 .
Figure 1 shows the graph of f.

Figure 1. Graph of $y=f(x)$.

For a comparison with the function $\sin (\pi x)$ we have the following. (Figure 2)

Figure 2. Graphs of $y=f(x)$ and $y=\sin (\pi x)$.

